Reduction and Normal Forms of Matrix Pencils
نویسنده
چکیده
Matrix pencils, or pairs of matrices, may be used in a variety of applications. In particular, a pair of matrices (E,A) may be interpreted as the differential equation Ex′ + Ax = 0. Such an equation is invariant by changes of variables, or linear combination of the equations. This change of variables or equations is associated to a group action. The invariants corresponding to this group action are well known, namely the Kronecker indices and divisors. Similarly, for another group action corresponding to the weak equivalence, a complete set of invariants is also known, among others the strangeness. We show how to define those invariants in a directly invariant fashion, i.e. without using a basis or an extra Euclidean structure. To this end, we will define a reduction process which produces a new system out of the original one. The various invariants may then be defined from operators related to the repeated application of the reduction process. We then show the relation between the invariants and the reduced subspace dimensions, and the relation with the regular pencil condition. This is all done using invariant tools only. Making special choices of basis then allows to construct the Kronecker canonical form. In a related manner, we construct the strangeness canonical form associated to weak equivalence.
منابع مشابه
Condensed Forms for Skew-Hamiltonian/Hamiltonian Pencils
Abstract In this paper we consider real or complex skew-Hamiltonian/Hamiltonian pencils λS −H, i.e., pencils where S is a skew-Hamiltonian and H is a Hamiltonian matrix. These pencils occur for example in the theory of continuous time, linear quadratic optimal control problems. We reduce these pencils to canonical and Schur-type forms under structure-preserving transformations, i.e., J-congruen...
متن کاملCanonical forms for doubly structured matrices and pencils
In this paper we derive canonical forms under structure preserving equivalence transformations for matrices and matrix pencils that have a multiple structure, which is either an H-selfadjoint or H-skew-adjoint structure, where the matrix H is a complex nonsingular Hermitian or skew-Hermitian matrix. Matrices and pencils of such multiple structures arise for example in quantum chemistry in Hartr...
متن کاملVector Spaces of Linearizations for Matrix Polynomials
The classical approach to investigating polynomial eigenvalue problems is linearization, where the polynomial is converted into a larger matrix pencil with the same eigenvalues. For any polynomial there are infinitely many linearizations with widely varying properties, but in practice the companion forms are typically used. However, these companion forms are not always entirely satisfactory, an...
متن کاملReduction to Versal Deformations of Matrix Pencils and Matrix Pairs with Application to Control Theory
Matrix pencils under the strict equivalence and matrix pairs under the state feedback equivalence are considered. It is known that a matrix pencil (or a matrix pair) smoothly dependent on parameters can be reduced locally to a special typically more simple form, called the versal deformation, by a smooth change of parameters and a strict equivalence (or feedback equivalence) transformation. We ...
متن کاملSolution of Linear Matrix Equation AXD −BXC = S SOLUTION OF LINEAR MATRIX EQUATION AXD −BXC = S AND PERTURBATION OF EIGENSPACES OF A MATRIX PENCIL. I†
Let A − λB and C − λD be two normal matrix pencils or Hermitian matrix pencils or definite matrix pencils, and let AXD −BXC = S. Our main results in this part are estimates of a unitarily invariant norm of the solution X under some conditions on the spectra of two pencils. §
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011